染色质可及性:探索基因调控的窗口5
发表时间:2023-12-10 16:50 细胞核的内部是一个高频动态的体系,大多数染色质以直径为30 nm染色质纤维的形式存在。这是在核小体串珠结构的基础上螺旋化而成的结构形式。核小体在整个基因组上的分布是不均匀的。核小体结构致密的区域,其与基因表达相关的结构区域相对封闭,不利于转录因子等调控元件与之结合,从而导致基因沉默;而核小体分布较少的区域,允许转录调控元件与这些区域的启动子、增强子相互接近并结合,进而调控基因表达(图1)。因此,染色质DNA在行使转录以及复制合成的功能过程中,蛋白质需要脱离DNA,使其处于裸露状态,即折叠结构变成松散状态时,这种裸露的DNA便于启动转录以调控基因的表达。 图1染色质可及性的动态变化 为了研究在不同的细胞生物进程中染色质的结构与其功能之间的关系,就需要对活跃的开放区域进行分析。目前研究染色质可及性的方法主要是将酶切法或物理化学方法与下一代测序技术结合,检测染色质开放或受保护的区域。常用的方法有脱氧核糖核酸酶I超敏位点测序(DNaseI hypersensitive site sequencing,DNase-seq)、微球菌核酸酶测序(micrococcal nuclease sequencing,MNase-seq)、甲醛辅助分离调控元件测序(formaldehyde-assisted isolation of regulatory elements sequencing,FAIREseq)以及转座酶可及性测序(assay for targeting accessible-chromatin with high-throughout sequencing,ATAC-seq)(图2)。 图2 检测染色质可及性和核小体定位的实验方法 MNase-seq 基因的表达调控可以通过改变染色质的拓扑结构或染色质修饰来实现。当组蛋白和DNA之间的结合力增加时,染色质浓缩成闭合构象并阻止转录因子进入DNA,导致基因抑制。相反,当组蛋白与DNA之间的结合力降低时,染色质解聚形成“开放”构象,使转录因子可接近DNA,从而导致转录激活。随着组织形态和功能的发展,细胞的表观遗传状态和基因表达谱发生动态变化,并随着环境的变化而不断变化,调节与形态发生和谱系指定相关的基因表达。染色质这种动态的重塑变化与胚胎发育、细胞衰老、肿瘤 发生、免疫、细胞命运决定过程密切相关。此外,染色质的动态结构还和人类健康有关。在全基因组层面对染色质可及性有了全局的认识后,就可以破译基因转录调控中的有效调控元件,为深入认识疾病的致病机制提供新的思路。 |